Fast Approximate Nearest Neighbor Search*

Amit Goyal and Hal Daumé III
Dept. of Computer Science, University of Maryland, College Park, MD 20742
{amit,hal}@umiacs.umd.edu

Many problems in Computer Vision [6, 5] and Natural Language Processing [12, 3] involves finding l nearest neighbors to the query. However, finding exact l nearest neighbors to the query can be time and memory intensive [10, 9]. Hence, in some applications [10, 5] it may be acceptable to return approximate l nearest neighbors. In this work, we propose a novel fast approximate nearest neighbor search algorithm and apply it to finding l similar words with respect to a query word.

1 Preprocessing for Fast Approximate Nearest Neighbor Search

First, for every word “z”, we assume that we are given a context vector $((c_1, v_1); (c_2, v_2) \ldots (c_d, v_d))$ of size d where c_d denotes the context and v_d denotes the Pointwise Mutual Information (PMI) (strength of association) between the context c_d and the word “z” (vocabulary of Z words). The context can be lexical, predicate argument structure and dependency units that co-occur with the word “z”. For each word, we use hashing to project the context vectors onto k directions. We use k pairwise independent hash functions that maps each of the d context (c_d) dimensions onto $\beta_{d,k} \in \{-1, +1\}$; and compute inner product between $\beta_{d,k}$ and v_d. Next, $\forall k, \sum_{i} \beta_{d,k} v_i$ returns the k random projections for each word “z”. We store the k random projections for all words (mapped to integers) as a matrix A of size of $k \times Z$.

The mechanism described above generates random projections by implicitly creating a random projection matrix from a set of $\{-1, +1\}$. This idea of creating implicit random projection matrix is motivated by the work on stable random projections [7] and online Locality Sensitive Hash [11]. The idea of generating random projections from the set $\{-1, +1\}$ was originally proposed by [1], then extended by [8].

For fast approximate search, we propose a novel approach, which involves two pre-processing steps:

First pre-processing step of fast approximate search is to create a binary matrix B using matrix A by taking sign of each of the entries of the matrix A. If $A(i,j) \geq 0$, then $B(i,j) = 1$; else $B(i,j) = 0$. This binarization creates Locality Sensitive Hash (LSH) function that preserves the cosine similarity between every pair of word vectors. This idea was first proposed by Charikar [2] and used in NLP for large-scale noun clustering [10]. However, in large-scale noun clustering work, they had to store the random projection matrix of size $D \times k$; where D denotes the number of all unique contexts (which is generally large and $D >> Z$) and in this paper, we do not explicitly require to store a random projection matrix.

We then pre-process the matrix A. First for matrix A, we pair the words $1 \cdots Z$ and their random projection values as shown in first matrix in Fig. 1. Second, we sort the elements of each row of matrix A by their random projection values from smallest to largest (shown in second matrix in Fig. 1). The sorting step takes $O(Z \log Z)$ time (We can assume k to be a constant). The sorting operation puts all the nearest neighbor words (for each k independent projections) next to each other. After sorting the matrix A, we throw away the projection values leaving only the words (third matrix in Fig. 1). To search a word in matrix A in constant time, we create another matrix C of size $(k \times Z)$ that is the fourth matrix from Fig. 1. Matrix C maps the words $1 \cdots Z$ to their sorted position in the matrix A (third matrix from Fig. 1) for each k.

2 Fast Approximate Search

After the pre-processing is done, fast approximate search is very simple and fast. To search a word “z”, first, we can look up matrix C to locate the k positions where “z” is stored in matrix A. This can be done in constant time (Again assuming k to be a constant.). Once, we find “z” in each row, we can select b (beam parameter) neighbors ($b/2$ neighbors from left and $b/2$ neighbors from right of the query word.) for all the k rows. This can be done in

*Topic: other applications and Preference: oral
In their work, they used the search algorithm PLEB (Point Location in Equal Balls) first proposed by Indyk and Motwani [4] and further improved by Charikar [2]. The improved PLEB algorithm involves generating permutations of the binary matrix \(B \), and Ravichandran et al. [10] used \(p = 1000 \) random permutations in their work, which means storing \(p = 1000 \) copies of matrix \(B \). In our work, we only use one copy of \(B \) and along with that we store \(A \) and \(C \) to find potential nearest neighbors. To evaluate the quality of our approximate search algorithm, we fix parameters \(k = 3000 \) and \(b = 40 \). We are given a context vectors for 106,733 words of size \(d = 1000 \) and using our approximate algorithm, we find top 10 neighbors for each word. Table 1 shows the top 10 most similar words for some words found by algorithm.

References

